GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3β in rat kidney

نویسندگان

  • Biying Liu
  • Haili Zhang
  • Xiao Tan
  • Daqian Yang
  • Zhanjun Lv
  • Huijie Jiang
  • Jingjing Lu
  • Ruiqi Baiyun
  • Zhigang Zhang
چکیده

Lead (Pb) is a global environmental health hazard that leads to nephrotoxicity. However, the effective treatment of Pb-induced nephrotoxicity remains elusive. Grape seed procyanidin extract (GSPE) has beneficial properties for multiple biological functions. Therefore, the present study investigated whether GSPE reduced Pb-induced nephrotoxicity as well as the protective mechanism of GSPE in a well-established 35-day Pb induced nephrotoxicity rat model. The results showed that GSPE normalized Pb-induced oxidative stress, histological damage, inflammatory, apoptosis, and changes of miR153 and glycogen synthase kinase 3β (GSK-3β) levels in rat kidney. Moreover, GSPE enhanced the induction of phase II detoxifying enzymes (heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1) by increasing nuclear factor-erythroid-2-related factor 2 (Nrf2) expression. This study identifies for the first time that Pb-induced oxidative stress in rat kidney is attenuated by GSPE treatment via activating Nrf2 signaling pathway and suppressing miR153 and GSK-3β. Nrf2 signaling provides a new therapeutic target for renal injury induced by Pb, and GSPE could be a potential natural agent to protect against Pb-induced nephrotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cytoprotective Effect of Hyperoside against Oxidative Stress Is Mediated by the Nrf2-ARE Signaling Pathway through GSK-3β Inactivation

Glycogen synthase kinase-3β (GSK-3β) acts as a negative regulator of NF-E2 related factor 2 (Nrf2) by inducing Nrf2 degradation and nuclear export. Our previous study demonstrated that the flavonoid hyperoside elicits cytoprotection against oxidative stress by activating the Keap1-Nrf2-ARE signaling pathway, thus increasing the expression of antioxidant enzymes, such as heme oxygenase-1 (HO-1),...

متن کامل

GSK-3β downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion

The NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway plays a critical role in protecting against oxidative stress in brain ischemia and reperfusion injury. Glycogen synthase kinase 3β (GSK-3β) may play a critical role in regulating Nrf2 in a Kelch-like ECH-associated protein 1 (Keap1)-independent manner. However, the relationship between GSK-3β and Nrf2 in brain ischemia...

متن کامل

Effect of Epigallocatechin Gallate and Catechin on Overexpression of GSK-3β and IR Genes Induced by Streptozotocin in Rat Brain

Background: Type 2 diabetes mellitus (T2DM) is one of the significant risk factors for Alzheimer disease (AD). Defects in insulin signaling pathway induce AD hallmarks mainly through activation of glycogen synthase kinase-3β (GSK-3β) pathway.  Objectives: In this study, we investigated the expression of GSK-3β and insulin receptor (IR) genes in the hippocampi of an animal model of sporadic AD ...

متن کامل

Targeting Glycogen Synthase Kinase-3β for Therapeutic Benefit against Oxidative Stress in Alzheimer's Disease: Involvement of the Nrf2-ARE Pathway

Specific regions of the Alzheimer's disease (AD) brain are burdened with extracellular protein deposits, the accumulation of which is concomitant with a complex cascade of overlapping events. Many of these pathological processes produce oxidative stress. Under normal conditions, oxidative stress leads to the activation of defensive gene expression that promotes cell survival. At the forefront o...

متن کامل

Effects of Grape Seed Proanthocyanidin Extract on Oxidative Stress Induced by Diabetes in Rat Kidney

Background: This study examined the effect of grape seed proanthocyanidin extract (GSPE) on lipid peroxidation content and activity of tissue antioxidant enzymes, including catalase, superoxide dismutase and glutathione peroxidase in diabetic rats. Methods: Thirty male rats were divided into three groups of 10 rats each: control, diabetic and diabetic groups that received 500 mg/kg GSPE for 6 w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017